Monolithic Integration of Collimating Fresnel Lens for Beam Quality Enhancement in Tapered High Power Laser Diode

We demonstrate, for the first time, a monolithic integrated lens for wide aperture gain-guided tapered laser beam quality enhancement by compensating the quadratic phase curvature. The 3mm long tapered laser with an output aperture of 170μm adopted in this design consists of a gain-guided tapered se...

Full description

Saved in:
Bibliographic Details
Main Authors: Lau, F. K., TEE, Chyng Wen, Zhao, X., Williams, K. A., Penty, R. V., White, I. H., Calligaro, M., Lecomte, M., Parillaud, O., Michel, N., Krakowski, M.
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2006
Subjects:
Online Access:https://ink.library.smu.edu.sg/lkcsb_research/3333
https://ink.library.smu.edu.sg/context/lkcsb_research/article/4332/viewcontent/Monolithic_integration_2006.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
id sg-smu-ink.lkcsb_research-4332
record_format dspace
spelling sg-smu-ink.lkcsb_research-43322019-01-09T09:33:51Z Monolithic Integration of Collimating Fresnel Lens for Beam Quality Enhancement in Tapered High Power Laser Diode Lau, F. K. TEE, Chyng Wen Zhao, X. Williams, K. A. Penty, R. V. White, I. H. Calligaro, M. Lecomte, M. Parillaud, O. Michel, N. Krakowski, M. We demonstrate, for the first time, a monolithic integrated lens for wide aperture gain-guided tapered laser beam quality enhancement by compensating the quadratic phase curvature. The 3mm long tapered laser with an output aperture of 170μm adopted in this design consists of a gain-guided tapered section and an index-guided ridge section and operated at 980nm. The lens design is implemented by focus ion beam etching (FIBE) technique, whereby the laser diode is mounted p-side up in order to facilitate the etching process. The lens is located 600μm away from the junction of the tapered and ridge sections, and is 40μm wide and 300μm long with a focal length of 800μm. The laser diode is characterised by light-current characteristics together with near- and far- field measurements before and after etching. The device is biased by current pulses of 1μs width and 0.1% duty cycle. Light-current measurement shows a drop of 10.5% in threshold current from 380mA to 340mA after the inclusion of lens. This is an evidence that the lens effectively equalised the curved phase in order to reduce the laser cavity loss by improving the coupling efficiency of backward travelling wave at the output facet. Throughout the whole current range tested, the width of near-field at waist is broadened by an average of 36% after the inclusion of lens. By successfully compensating the quadratic phase curvature of the mode, the beam divergence in the far-field is significantly narrowed by an average of 28.5%. M2 factor is improved by an average of 12%. 2006-01-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/lkcsb_research/3333 info:doi/10.1117/12.648047 https://ink.library.smu.edu.sg/context/lkcsb_research/article/4332/viewcontent/Monolithic_integration_2006.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection Lee Kong Chian School Of Business eng Institutional Knowledge at Singapore Management University Etching Fresnel lenses Ion beams Laser resonators Lasers Lens design Lenses Near field Semiconductor lasers Physical Sciences and Mathematics
institution Singapore Management University
building SMU Libraries
continent Asia
country Singapore
Singapore
content_provider SMU Libraries
collection InK@SMU
language English
topic Etching
Fresnel lenses
Ion beams
Laser resonators
Lasers
Lens design
Lenses
Near field
Semiconductor lasers
Physical Sciences and Mathematics
spellingShingle Etching
Fresnel lenses
Ion beams
Laser resonators
Lasers
Lens design
Lenses
Near field
Semiconductor lasers
Physical Sciences and Mathematics
Lau, F. K.
TEE, Chyng Wen
Zhao, X.
Williams, K. A.
Penty, R. V.
White, I. H.
Calligaro, M.
Lecomte, M.
Parillaud, O.
Michel, N.
Krakowski, M.
Monolithic Integration of Collimating Fresnel Lens for Beam Quality Enhancement in Tapered High Power Laser Diode
description We demonstrate, for the first time, a monolithic integrated lens for wide aperture gain-guided tapered laser beam quality enhancement by compensating the quadratic phase curvature. The 3mm long tapered laser with an output aperture of 170μm adopted in this design consists of a gain-guided tapered section and an index-guided ridge section and operated at 980nm. The lens design is implemented by focus ion beam etching (FIBE) technique, whereby the laser diode is mounted p-side up in order to facilitate the etching process. The lens is located 600μm away from the junction of the tapered and ridge sections, and is 40μm wide and 300μm long with a focal length of 800μm. The laser diode is characterised by light-current characteristics together with near- and far- field measurements before and after etching. The device is biased by current pulses of 1μs width and 0.1% duty cycle. Light-current measurement shows a drop of 10.5% in threshold current from 380mA to 340mA after the inclusion of lens. This is an evidence that the lens effectively equalised the curved phase in order to reduce the laser cavity loss by improving the coupling efficiency of backward travelling wave at the output facet. Throughout the whole current range tested, the width of near-field at waist is broadened by an average of 36% after the inclusion of lens. By successfully compensating the quadratic phase curvature of the mode, the beam divergence in the far-field is significantly narrowed by an average of 28.5%. M2 factor is improved by an average of 12%.
format text
author Lau, F. K.
TEE, Chyng Wen
Zhao, X.
Williams, K. A.
Penty, R. V.
White, I. H.
Calligaro, M.
Lecomte, M.
Parillaud, O.
Michel, N.
Krakowski, M.
author_facet Lau, F. K.
TEE, Chyng Wen
Zhao, X.
Williams, K. A.
Penty, R. V.
White, I. H.
Calligaro, M.
Lecomte, M.
Parillaud, O.
Michel, N.
Krakowski, M.
author_sort Lau, F. K.
title Monolithic Integration of Collimating Fresnel Lens for Beam Quality Enhancement in Tapered High Power Laser Diode
title_short Monolithic Integration of Collimating Fresnel Lens for Beam Quality Enhancement in Tapered High Power Laser Diode
title_full Monolithic Integration of Collimating Fresnel Lens for Beam Quality Enhancement in Tapered High Power Laser Diode
title_fullStr Monolithic Integration of Collimating Fresnel Lens for Beam Quality Enhancement in Tapered High Power Laser Diode
title_full_unstemmed Monolithic Integration of Collimating Fresnel Lens for Beam Quality Enhancement in Tapered High Power Laser Diode
title_sort monolithic integration of collimating fresnel lens for beam quality enhancement in tapered high power laser diode
publisher Institutional Knowledge at Singapore Management University
publishDate 2006
url https://ink.library.smu.edu.sg/lkcsb_research/3333
https://ink.library.smu.edu.sg/context/lkcsb_research/article/4332/viewcontent/Monolithic_integration_2006.pdf
_version_ 1770571400497594368