Easing the inferential leap in competency modeling: The effects of task-related information and subject matter expertise

Despite the rising popularity of the practice of competency modeling, research on competency modeling has lagged behind. This study begins to close this practice-science gap through 3 studies (1 lab study and 2 field studies), which employ generalizability analysis to shed light on (a) the quality o...

Full description

Saved in:
Bibliographic Details
Main Authors: LIEVENS, Filip, SANCHEZ, Juan I., DE CORTE, Wilfred
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2004
Subjects:
Online Access:https://ink.library.smu.edu.sg/lkcsb_research/5584
https://ink.library.smu.edu.sg/context/lkcsb_research/article/6583/viewcontent/competencies.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Despite the rising popularity of the practice of competency modeling, research on competency modeling has lagged behind. This study begins to close this practice-science gap through 3 studies (1 lab study and 2 field studies), which employ generalizability analysis to shed light on (a) the quality of inferences made in competency modeling and (b) the effects of incorporating elements of traditional job analysis into competency modeling to raise the quality of competency inferences. Study 1 showed that competency modeling resulted in poor interrater reliability and poor between-job discriminant validity amongst inexperienced raters. In contrast, Study 2 suggested that the quality of competency inferences was higher among a variety of job experts in a real organization. Finally, Study 3 showed that blending competency modeling efforts and task-related information increased both interrater reliability among SMEs and their ability to discriminate among jobs. In general, this set of results highlights that the inferences made in competency modeling should not be taken for granted, and that practitioners can improve competency modeling efforts by incorporating some of the methodological rigor inherent in job analysis.