Generalized majorization-minimization for non-convex optimization
Majorization-Minimization (MM) algorithms optimize an objective function by iteratively minimizing its majorizing surrogate and offer attractively fast convergence rate for convex problems. However, their convergence behaviors for non-convex problems remain unclear. In this paper, we propose a novel...
محفوظ في:
المؤلفون الرئيسيون: | , , , |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/9006 https://ink.library.smu.edu.sg/context/sis_research/article/10009/viewcontent/2019_IJCAI_MM.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |