Bidding mechanisms in graph games

In two-player games on graphs, the players move a token through a graph to produce a finite or infinite path, which determines the qualitative winner or quantitative payoff of the game. We study bidding games in which the players bid for the right to move the token. Several bidding rules were studie...

Full description

Saved in:
Bibliographic Details
Main Authors: AVNI, Guy, HENZINGER, Thomas A., ZIKELIC, Dorde
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2019
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/9061
https://ink.library.smu.edu.sg/context/sis_research/article/10064/viewcontent/LIPIcs.MFCS.2019.11.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:In two-player games on graphs, the players move a token through a graph to produce a finite or infinite path, which determines the qualitative winner or quantitative payoff of the game. We study bidding games in which the players bid for the right to move the token. Several bidding rules were studied previously. In Richman bidding, in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Poorman bidding is similar except that the winner of the bidding pays the “bank” rather than the other player. Taxman bidding spans the spectrum between Richman and poorman bidding. They are parameterized by a constant τ ∈ [0, 1]: portion τ of the winning bid is paid to the other player, and portion 1 − τ to the bank. While finite-duration (reachability) taxman games have been studied before, we present, for the first time, results on infinite-duration taxman games. It was previously shown that both Richman and poorman infinite-duration games with qualitative objectives reduce to reachability games, and we show a similar result here. Our most interesting results concern quantitative taxman games, namely mean-payoff games, where poorman and Richman bidding differ significantly. A central quantity in these games is the ratio between the two players’ initial budgets. While in poorman mean-payoff games, the optimal payoff of a player depends on the initial ratio, in Richman bidding, the payoff depends only on the structure of the game. In both games the optimal payoffs can be found using (different) probabilistic connections with random-turn games in which in each turn, instead of bidding, a coin is tossed to determine which player moves. While the value with Richman bidding equals the value of a random-turn game with an un-biased coin, with poorman bidding, the bias in the coin is the initial ratio of the budgets. We give a complete classification of mean-payoff taxman games that is based on a probabilistic connection: the value of a taxman bidding game with parameter τ and initial ratio r, equals the value of a random-turn game that uses a coin with bias F(τ, r) = r+τ·(1−r) 1+τ . Thus, we show that Richman bidding is the exception; namely, for every τ