Fully automated selfish mining analysis in efficient proof systems blockchains

We study selfish mining attacks in longest-chain blockchains like Bitcoin, but where the proof of work is replaced with efficient proof systems - like proofs of stake or proofs of space - and consider the problem of computing an optimal selfish mining attack which maximizes expected relative revenue...

Full description

Saved in:
Bibliographic Details
Main Authors: CHATTERJEE, Krishnendu, EBRAHIMZADEH, Amirali, KARRABI, Mehrdad, PIETRZAK, Krzysztof, YEO, Michelle, ZIKELIC, Dorde
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2024
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/9064
https://ink.library.smu.edu.sg/context/sis_research/article/10067/viewcontent/3662158.3662769.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:We study selfish mining attacks in longest-chain blockchains like Bitcoin, but where the proof of work is replaced with efficient proof systems - like proofs of stake or proofs of space - and consider the problem of computing an optimal selfish mining attack which maximizes expected relative revenue of the adversary, thus minimizing the chain quality. To this end, we propose a novel selfish mining attack that aims to maximize this objective and formally model the attack as a Markov decision process (MDP). We then present a formal analysis procedure which computes an ϵ-tight lower bound on the optimal expected relative revenue in the MDP and a strategy that achieves this ϵ-tight lower bound, where ϵ > 0 may be any specified precision. Our analysis is fully automated and provides formal guarantees on the correctness. We evaluate our selfish mining attack and observe that it achieves superior expected relative revenue compared to two considered baselines.In concurrent work [Sarenche FC'24] does an automated analysis on selfish mining in predictable longest-chain blockchains based on efficient proof systems. Predictable means the randomness for the challenges is fixed for many blocks (as used e.g., in Ouroboros), while we consider unpredictable (Bitcoin-like) chains where the challenge is derived from the previous block.