Fully automated selfish mining analysis in efficient proof systems blockchains
We study selfish mining attacks in longest-chain blockchains like Bitcoin, but where the proof of work is replaced with efficient proof systems - like proofs of stake or proofs of space - and consider the problem of computing an optimal selfish mining attack which maximizes expected relative revenue...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2024
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/9064 https://ink.library.smu.edu.sg/context/sis_research/article/10067/viewcontent/3662158.3662769.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-10067 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-100672024-08-01T15:30:21Z Fully automated selfish mining analysis in efficient proof systems blockchains CHATTERJEE, Krishnendu EBRAHIMZADEH, Amirali KARRABI, Mehrdad PIETRZAK, Krzysztof YEO, Michelle ZIKELIC, Dorde We study selfish mining attacks in longest-chain blockchains like Bitcoin, but where the proof of work is replaced with efficient proof systems - like proofs of stake or proofs of space - and consider the problem of computing an optimal selfish mining attack which maximizes expected relative revenue of the adversary, thus minimizing the chain quality. To this end, we propose a novel selfish mining attack that aims to maximize this objective and formally model the attack as a Markov decision process (MDP). We then present a formal analysis procedure which computes an ϵ-tight lower bound on the optimal expected relative revenue in the MDP and a strategy that achieves this ϵ-tight lower bound, where ϵ > 0 may be any specified precision. Our analysis is fully automated and provides formal guarantees on the correctness. We evaluate our selfish mining attack and observe that it achieves superior expected relative revenue compared to two considered baselines.In concurrent work [Sarenche FC'24] does an automated analysis on selfish mining in predictable longest-chain blockchains based on efficient proof systems. Predictable means the randomness for the challenges is fixed for many blocks (as used e.g., in Ouroboros), while we consider unpredictable (Bitcoin-like) chains where the challenge is derived from the previous block. 2024-06-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/9064 info:doi/10.1145/3662158.3662769 https://ink.library.smu.edu.sg/context/sis_research/article/10067/viewcontent/3662158.3662769.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Blockchain Formal Methods Efficient Proof Systems Selfish Mining Markov Decision Process Databases and Information Systems |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Blockchain Formal Methods Efficient Proof Systems Selfish Mining Markov Decision Process Databases and Information Systems |
spellingShingle |
Blockchain Formal Methods Efficient Proof Systems Selfish Mining Markov Decision Process Databases and Information Systems CHATTERJEE, Krishnendu EBRAHIMZADEH, Amirali KARRABI, Mehrdad PIETRZAK, Krzysztof YEO, Michelle ZIKELIC, Dorde Fully automated selfish mining analysis in efficient proof systems blockchains |
description |
We study selfish mining attacks in longest-chain blockchains like Bitcoin, but where the proof of work is replaced with efficient proof systems - like proofs of stake or proofs of space - and consider the problem of computing an optimal selfish mining attack which maximizes expected relative revenue of the adversary, thus minimizing the chain quality. To this end, we propose a novel selfish mining attack that aims to maximize this objective and formally model the attack as a Markov decision process (MDP). We then present a formal analysis procedure which computes an ϵ-tight lower bound on the optimal expected relative revenue in the MDP and a strategy that achieves this ϵ-tight lower bound, where ϵ > 0 may be any specified precision. Our analysis is fully automated and provides formal guarantees on the correctness. We evaluate our selfish mining attack and observe that it achieves superior expected relative revenue compared to two considered baselines.In concurrent work [Sarenche FC'24] does an automated analysis on selfish mining in predictable longest-chain blockchains based on efficient proof systems. Predictable means the randomness for the challenges is fixed for many blocks (as used e.g., in Ouroboros), while we consider unpredictable (Bitcoin-like) chains where the challenge is derived from the previous block. |
format |
text |
author |
CHATTERJEE, Krishnendu EBRAHIMZADEH, Amirali KARRABI, Mehrdad PIETRZAK, Krzysztof YEO, Michelle ZIKELIC, Dorde |
author_facet |
CHATTERJEE, Krishnendu EBRAHIMZADEH, Amirali KARRABI, Mehrdad PIETRZAK, Krzysztof YEO, Michelle ZIKELIC, Dorde |
author_sort |
CHATTERJEE, Krishnendu |
title |
Fully automated selfish mining analysis in efficient proof systems blockchains |
title_short |
Fully automated selfish mining analysis in efficient proof systems blockchains |
title_full |
Fully automated selfish mining analysis in efficient proof systems blockchains |
title_fullStr |
Fully automated selfish mining analysis in efficient proof systems blockchains |
title_full_unstemmed |
Fully automated selfish mining analysis in efficient proof systems blockchains |
title_sort |
fully automated selfish mining analysis in efficient proof systems blockchains |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2024 |
url |
https://ink.library.smu.edu.sg/sis_research/9064 https://ink.library.smu.edu.sg/context/sis_research/article/10067/viewcontent/3662158.3662769.pdf |
_version_ |
1814047721534783488 |