EarnHFT: Efficient hierarchical reinforcement learning for high frequency trading
High-frequency trading (HFT) is using computer algorithms to make trading decisions in short time scales (e.g., second-level), which is widely used in the Cryptocurrency (Crypto) market, (e.g., Bitcoin). Reinforcement learning (RL) in financial research has shown stellar performance on many quantita...
محفوظ في:
المؤلفون الرئيسيون: | QIN, Molei, SUN, Shuo, ZHANG, Wentao, XIA, Haochong, WANG, Xinrun, AN, Bo |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/9128 https://ink.library.smu.edu.sg/context/sis_research/article/10131/viewcontent/29384_EarnHFT_pvoa.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
MacroHFT : Memory augmented context-aware reinforcement learning on high frequency trading
بواسطة: ZONG, Chuqiao, وآخرون
منشور في: (2024) -
Market-GAN: Adding control to financial market data generation with semantic context
بواسطة: XIA, Haochong, وآخرون
منشور في: (2024) -
Transition-informed reinforcement learning for large-scale Stackelberg mean-field games.
بواسطة: LI, Pengdeng, وآخرون
منشور في: (2024) -
Reinforcement learning with maskable stock representation for portfolio management in customizable stock pools
بواسطة: ZHANG, Wentao, وآخرون
منشور في: (2024) -
Learning to collaborate in multi-module recommendation via multi-agent reinforcement learning without communication
بواسطة: HE, Xu, وآخرون
منشور في: (2020)