Aspect-based sentiment analysis in question answering forums

Aspect-based sentiment analysis (ABSA) typically focuses on extracting aspects and predicting their sentiments on individual sentences such as customer reviews. Recently, another kind of opinion sharing platform, namely question answering (QA) forum, has received increasing popularity, which accumul...

Full description

Saved in:
Bibliographic Details
Main Authors: ZHANG, Wenxuan, DENG, Yang, LI, Xin, BING, Lidong, LAM, Wai
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2021
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/9149
https://ink.library.smu.edu.sg/context/sis_research/article/10152/viewcontent/2021.findings_emnlp.390.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Aspect-based sentiment analysis (ABSA) typically focuses on extracting aspects and predicting their sentiments on individual sentences such as customer reviews. Recently, another kind of opinion sharing platform, namely question answering (QA) forum, has received increasing popularity, which accumulates a large number of user opinions towards various aspects. This motivates us to investigate the task of ABSA on QA forums (ABSA-QA), aiming to jointly detect the discussed aspects and their sentiment polarities for a given QA pair. Unlike review sentences, a QA pair is composed of two parallel sentences, which requires interaction modeling to align the aspect mentioned in the question and the associated opinion clues in the answer. To this end, we propose a model with a specific design of cross-sentence aspect-opinion interaction modeling to address this task. The proposed method is evaluated on three real-world datasets and the results show that our model outperforms several strong baselines adopted from related state-of-the-art models.