Motif graph neural network
Graphs can model complicated interactions between entities, which naturally emerge in many important applications. These applications can often be cast into standard graph learning tasks, in which a crucial step is to learn low-dimensional graph representations. Graph neural networks (GNNs) are curr...
محفوظ في:
المؤلفون الرئيسيون: | CHEN, Xuexin, CAI, Ruicui, FANG, Yuan, WU, Min, LI, Zijian, HAO, Zhifeng |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/9319 https://ink.library.smu.edu.sg/context/sis_research/article/10319/viewcontent/MotifGraphNeuralNetword_av.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
ALGORITHMIC INDUCTIVE BIASES FOR GRAPH REPRESENTATION LEARNING
بواسطة: MOHAMMED HAROON DUPTY
منشور في: (2022) -
On the probability of necessity and sufficiency of explaining Graph Neural Networks: A lower bound optimization approach
بواسطة: CAI, Ruichu, وآخرون
منشور في: (2025) -
Heterogeneous graph neural network with multi-view representation learning
بواسطة: SHAO, Zezhi, وآخرون
منشور في: (2023) -
Topic-aware heterogeneous graph neural network for link prediction
بواسطة: XU, Siyong, وآخرون
منشور في: (2021) -
SPATIAL-TEMPORAL INDOOR ENVIRONMENTAL SATISFACTION PREDICTION USING GRAPH NEURAL NETWORKS
بواسطة: MAHMOUD MOHAMED MOHAMED ALI ABDELRAHMAN
منشور في: (2022)