Lightweight privacy-preserving cross-cluster federated learning with heterogeneous data
Federated Learning (FL) eliminates data silos that hinder digital transformation while training a shared global model collaboratively. However, training a global model in the context of FL has been highly susceptible to heterogeneity and privacy concerns due to discrepancies in data distribution, wh...
Saved in:
Main Authors: | , , , , , |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2024
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/9637 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
成為第一個發表評論!