Reward penalties on augmented states for solving richly constrained RL effectively
Constrained Reinforcement Learning employs trajectory-based cost constraints (such as expected cost, Value at Risk, or Conditional VaR cost) to compute safe policies. The challenge lies in handling these constraints effectively while optimizing expected reward. Existing methods convert such trajecto...
محفوظ في:
المؤلفون الرئيسيون: | , , , |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/9685 https://ink.library.smu.edu.sg/context/sis_research/article/10685/viewcontent/29962_Article_Text_34016_1_2_20240324.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |