Reward penalties on augmented states for solving richly constrained RL effectively
Constrained Reinforcement Learning employs trajectory-based cost constraints (such as expected cost, Value at Risk, or Conditional VaR cost) to compute safe policies. The challenge lies in handling these constraints effectively while optimizing expected reward. Existing methods convert such trajecto...
محفوظ في:
المؤلفون الرئيسيون: | HAO, Jiang, MAI, Tien, VARAKANTHAN, Pradeep, HOANG, Minh Huy |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/9685 https://ink.library.smu.edu.sg/context/sis_research/article/10685/viewcontent/29962_Article_Text_34016_1_2_20240324.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Financial portfolio optimization: an autoregressive deep reinforcement learning algorithm with learned intrinsic rewards
بواسطة: Lim, Magdalene Hui Qi
منشور في: (2024) -
SINGLE TRAJECTORY CONVERGENCE IN REINFORCEMENT LEARNING PROBLEMS WITH VECTORIAL REWARDS
بواسطة: EWE ZI YI
منشور في: (2021) -
A STUDY OF MARKOV DECISIONS PROCESSES IN FINITE SPACES AND APPLICATION ON FISHING QUOTAS
بواسطة: CECILE MONIQUE HELENE DECKER
منشور في: (2023) -
Imitate the good and avoid the bad: An incremental approach to safe reinforcement learning
بواسطة: HOANG, Minh Huy, وآخرون
منشور في: (2024) -
Safety through feedback in constrained RL
بواسطة: CHIRRA, Shashank Reddy, وآخرون
منشور في: (2024)