Long-tailed out-of-distribution detection via normalized outlier distribution adaptation
Onekeychallenge in Out-of-Distribution (OOD) detection is the absence of groundtruth OOD samples during training. One principled approach to address this issue is to use samples from external datasets as outliers (i.e., pseudo OOD samples) to train OOD detectors. However, we find empirically that th...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2024
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/9877 https://ink.library.smu.edu.sg/context/sis_research/article/10877/viewcontent/10274_Long_Tailed_Out_of_Distr.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-10877 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-108772025-01-02T09:14:45Z Long-tailed out-of-distribution detection via normalized outlier distribution adaptation MIAO, Wenjun PANG, Guansong ZHENG, Jin BAI, Xiao Onekeychallenge in Out-of-Distribution (OOD) detection is the absence of groundtruth OOD samples during training. One principled approach to address this issue is to use samples from external datasets as outliers (i.e., pseudo OOD samples) to train OOD detectors. However, we find empirically that the outlier samples often present a distribution shift compared to the true OOD samples, especially in LongTailed Recognition (LTR) scenarios, where ID classes are heavily imbalanced, i.e., the true OOD samples exhibit very different probability distribution to the head and tailed ID classes from the outliers. In this work, we propose a novel approach, namely normalized outlier distribution adaptation (AdaptOD), to tackle this distribution shift problem. One of its key components is dynamic outlier distribution adaptation that effectively adapts a vanilla outlier distribution based on the outlier samples to the true OOD distribution by utilizing the OOD knowledge in the predicted OOD samples during inference. Further, to obtain a more reliable set of predicted OOD samples on long-tailed ID data, a novel dual-normalized energy loss is introduced in AdaptOD, which leverages class- and sample-wise normalized energy to enforce a more balanced prediction energy on imbalanced ID samples. This helps avoid bias toward the head samples and learn a substantially better vanilla outlier distribution than existing energy losses during training. It also eliminates the need of manually tuning the sensitive margin hyperparameters in energy losses. Empirical results on three popular benchmarks for OOD detection in LTR show the superior performance of AdaptOD over state-of-the-art methods. Code is available at https://github.com/mala-lab/AdaptOD. 2024-12-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/9877 info:doi/10.48550/ARXIV.2410.20807 https://ink.library.smu.edu.sg/context/sis_research/article/10877/viewcontent/10274_Long_Tailed_Out_of_Distr.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Databases and Information Systems |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Databases and Information Systems |
spellingShingle |
Databases and Information Systems MIAO, Wenjun PANG, Guansong ZHENG, Jin BAI, Xiao Long-tailed out-of-distribution detection via normalized outlier distribution adaptation |
description |
Onekeychallenge in Out-of-Distribution (OOD) detection is the absence of groundtruth OOD samples during training. One principled approach to address this issue is to use samples from external datasets as outliers (i.e., pseudo OOD samples) to train OOD detectors. However, we find empirically that the outlier samples often present a distribution shift compared to the true OOD samples, especially in LongTailed Recognition (LTR) scenarios, where ID classes are heavily imbalanced, i.e., the true OOD samples exhibit very different probability distribution to the head and tailed ID classes from the outliers. In this work, we propose a novel approach, namely normalized outlier distribution adaptation (AdaptOD), to tackle this distribution shift problem. One of its key components is dynamic outlier distribution adaptation that effectively adapts a vanilla outlier distribution based on the outlier samples to the true OOD distribution by utilizing the OOD knowledge in the predicted OOD samples during inference. Further, to obtain a more reliable set of predicted OOD samples on long-tailed ID data, a novel dual-normalized energy loss is introduced in AdaptOD, which leverages class- and sample-wise normalized energy to enforce a more balanced prediction energy on imbalanced ID samples. This helps avoid bias toward the head samples and learn a substantially better vanilla outlier distribution than existing energy losses during training. It also eliminates the need of manually tuning the sensitive margin hyperparameters in energy losses. Empirical results on three popular benchmarks for OOD detection in LTR show the superior performance of AdaptOD over state-of-the-art methods. Code is available at https://github.com/mala-lab/AdaptOD. |
format |
text |
author |
MIAO, Wenjun PANG, Guansong ZHENG, Jin BAI, Xiao |
author_facet |
MIAO, Wenjun PANG, Guansong ZHENG, Jin BAI, Xiao |
author_sort |
MIAO, Wenjun |
title |
Long-tailed out-of-distribution detection via normalized outlier distribution adaptation |
title_short |
Long-tailed out-of-distribution detection via normalized outlier distribution adaptation |
title_full |
Long-tailed out-of-distribution detection via normalized outlier distribution adaptation |
title_fullStr |
Long-tailed out-of-distribution detection via normalized outlier distribution adaptation |
title_full_unstemmed |
Long-tailed out-of-distribution detection via normalized outlier distribution adaptation |
title_sort |
long-tailed out-of-distribution detection via normalized outlier distribution adaptation |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2024 |
url |
https://ink.library.smu.edu.sg/sis_research/9877 https://ink.library.smu.edu.sg/context/sis_research/article/10877/viewcontent/10274_Long_Tailed_Out_of_Distr.pdf |
_version_ |
1821237271284678656 |