Long-tailed out-of-distribution detection via normalized outlier distribution adaptation
Onekeychallenge in Out-of-Distribution (OOD) detection is the absence of groundtruth OOD samples during training. One principled approach to address this issue is to use samples from external datasets as outliers (i.e., pseudo OOD samples) to train OOD detectors. However, we find empirically that th...
محفوظ في:
المؤلفون الرئيسيون: | MIAO, Wenjun, PANG, Guansong, ZHENG, Jin, BAI, Xiao |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/9877 https://ink.library.smu.edu.sg/context/sis_research/article/10877/viewcontent/10274_Long_Tailed_Out_of_Distr.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Out-of-distribution detection in long-tailed recognition with calibrated outlier class learning
بواسطة: MIAO, Wenjun, وآخرون
منشور في: (2024) -
Zero-shot out-of-distribution detection with outlier label exposure
بواسطة: DING, Choubo, وآخرون
منشور في: (2024) -
Learning transferable negative prompts for out-of-distribution detection
بواسطة: LI, Tianqi, وآخرون
منشور في: (2024) -
The devil is in the tails: How long-tailed code distributions impact large language models
بواسطة: ZHOU, Xin, وآخرون
منشور في: (2023) -
Outlier detection in complex categorical data by modeling the feature value couplings
بواسطة: PANG, Guansong, وآخرون
منشور في: (2016)