Privacy-preserving Byzantine-robust federated learning via blockchain systems
Federated learning enables clients to train a machine learning model jointly without sharing their local data. However, due to the centrality of federated learning framework and the untrustworthiness of clients, traditional federated learning solutions are vulnerable to poisoning attacks from malici...
محفوظ في:
المؤلفون الرئيسيون: | MIAO, Yinbin, LIU, Ziteng, LI, Hongwei, CHOO, Kim-Kwang Raymond, DENG, Robert H. |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/10114 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
ShieldFL: Mitigating model poisoning attacks in privacy-preserving federated learning
بواسطة: MA, Zhuoran, وآخرون
منشور في: (2022) -
Robust asynchronous federated learning with time-weighted and stale model aggregation
بواسطة: MIAO, Yinbin, وآخرون
منشور في: (2024) -
Efficient Privacy-Preserving Federated Learning With Improved Compressed Sensing
بواسطة: ZHANG, Yifan., وآخرون
منشور في: (2023) -
Privacy-preserving outsourced calculation toolkit in the cloud
بواسطة: LIU, Ximeng, وآخرون
منشور في: (2020) -
FlGan: GAN-based unbiased federated learning under non-IID settings
بواسطة: MA, Zhuoran, وآخرون
منشور في: (2024)