Efficient Discovery of Frequent Approximate Sequential Patterns
We propose an efficient algorithm for mining frequent approximate sequential patterns under the Hamming distance model. Our algorithm gains its efficiency by adopting a "break-down-and-build-up" methodology. The "breakdown" is based on the observation that all occurrences of a fr...
محفوظ في:
المؤلفون الرئيسيون: | ZHU, Feida, YAN, Xifeng, HAN, Jiawei, YU, Philip S. |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2007
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/933 https://ink.library.smu.edu.sg/context/sis_research/article/1932/viewcontent/EfficientDiscoveryFrequentAppSeqPatterns_2007.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Mining normalized weighted frequent sequential patterns with Time intervals algorithm
بواسطة: Trần Huy Dương, Vũ Đức Thi
منشور في: (2016) -
Thuật toán khai phá mẫu dãy thường xuyên trọng số chuẩn hóa với khoảng cách thời gian
بواسطة: Trần Huy Dương, Vũ Đức Thi
منشور في: (2016) -
Non-redundant sequential rules-Theory and algorithm
بواسطة: Lo, D., وآخرون
منشور في: (2013) -
Non-Redundant Sequential Rules - Theory and Algorithm
بواسطة: LO, David, وآخرون
منشور في: (2009) -
Approximate Bayesian Computation for Smoothing
بواسطة: Martin, J.S., وآخرون
منشور في: (2016)