Mining relationship graphs for effective business objectives
Modern organization has two types of customer profiles: active and passive. Active customers contribute to the business goals of an organization, while passive customers are potential candidates that can be converted to active ones. Existing KDD techniques focused mainly on past data generated by ac...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2002
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/979 https://ink.library.smu.edu.sg/context/sis_research/article/1978/viewcontent/Ong2002_Chapter_MiningRelationshipGraphsForEff.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Modern organization has two types of customer profiles: active and passive. Active customers contribute to the business goals of an organization, while passive customers are potential candidates that can be converted to active ones. Existing KDD techniques focused mainly on past data generated by active customers. The insights discovered apply well to active ones but may scale poorly with passive customers. This is because there is no attempt to generate know-how to convert passive customers into active ones. We propose an algorithm to discover relationship graphs using both types of profile. Using relationship graphs, an organization can be more effective in realizing its goals. |
---|