SCLOPE: An algorithm for clustering data streams of categorical attributes
Clustering is a difficult problem especially when we consider the task in the context of a data stream of categorical attributes. In this paper, we propose SCLOPE, a novel algorithm based on CLOPE's intuitive observation about cluster histograms. Unlike CLOPE however, our algorithm is very fast...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2004
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/1021 https://ink.library.smu.edu.sg/context/sis_research/article/2020/viewcontent/SCLOPE__An_algorithm_for_clustering_data_streams_of_categorical_attributes.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Clustering is a difficult problem especially when we consider the task in the context of a data stream of categorical attributes. In this paper, we propose SCLOPE, a novel algorithm based on CLOPE's intuitive observation about cluster histograms. Unlike CLOPE however, our algorithm is very fast and operates within the constraints of a data stream environment. In particular, we designed SCLOPE according to the recent CluStream framework. Our evaluation of SCLOPE shows very promising results. It consistently outperforms CLOPE in speed and scalability tests on our data sets while maintaining high cluster purity; it also supports cluster analysis that other algorithms in its class do not. |
---|