SCLOPE: An algorithm for clustering data streams of categorical attributes
Clustering is a difficult problem especially when we consider the task in the context of a data stream of categorical attributes. In this paper, we propose SCLOPE, a novel algorithm based on CLOPE's intuitive observation about cluster histograms. Unlike CLOPE however, our algorithm is very fast...
Saved in:
Main Authors: | ONG, Kok-Leong, LI, Wenyuan, NG, Wee-Keong, LIM, Ee Peng |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2004
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/1021 https://ink.library.smu.edu.sg/context/sis_research/article/2020/viewcontent/SCLOPE__An_algorithm_for_clustering_data_streams_of_categorical_attributes.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
A spectroscopy of texts for effective clustering
由: LI, Wenyuan, et al.
出版: (2004) -
Categorical skylines for streaming data
由: Sarkas, N., et al.
出版: (2013) -
Bursty feature representation for clustering text streams
由: HE, Qi, et al.
出版: (2007) -
Cooperative multi-attribute bilateral online negotiation for e-commerce
由: ZHAO, Lei, et al.
出版: (2001) -
DEVELOPMENT OF DENSITY BASED CLUSTERING ALGORITHMS FOR STREAMING DATA
由: Sirisup Laohakiat
出版: (2016)