A POMDP model for guiding taxi cruising in a congested urban city
We consider a partially observable Markov decision process (POMDP) model for improving a taxi agent cruising decision in a congested urban city. Using real-world data provided by a large taxi company in Singapore as a guide, we derive the state transition function of the POMDP. Specifically, we mode...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2011
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/1385 https://ink.library.smu.edu.sg/context/sis_research/article/2384/viewcontent/pomdpTaxi_2011_MICAI.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | We consider a partially observable Markov decision process (POMDP) model for improving a taxi agent cruising decision in a congested urban city. Using real-world data provided by a large taxi company in Singapore as a guide, we derive the state transition function of the POMDP. Specifically, we model the cruising behavior of the drivers as continuous-time Markov chains. We then apply dynamic programming algorithm for finding the optimal policy of the driver agent. Using a simulation, we show that this policy is significantly better than a greedy policy in congested road network. |
---|