Engagingness and responsiveness behavior models on the Enron email network and its application to email reply order prediction
In email networks, user behaviors affect the way emails are sent and replied. While knowing these user behaviors can help to create more intelligent email services, there has not been much research into mining these behaviors. In this paper, we investigate user engagingness and responsiveness as two...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2013
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/1980 https://ink.library.smu.edu.sg/context/sis_research/article/2979/viewcontent/Engagingness_and_Responsiveness_Behavior_Models_on_the_Enron_Emai.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-2979 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-29792018-07-13T03:32:49Z Engagingness and responsiveness behavior models on the Enron email network and its application to email reply order prediction ON, Byung-Won LIM, Ee Peng JIANG, Jing TEOW, Loo Nin In email networks, user behaviors affect the way emails are sent and replied. While knowing these user behaviors can help to create more intelligent email services, there has not been much research into mining these behaviors. In this paper, we investigate user engagingness and responsiveness as two interaction behaviors that give us useful insights into how users email one another. Engaging users are those who can effectively solicit responses from other users. Responsive users are those who are willing to respond to other users. By modeling such behaviors, we are able to mine them and to identify engaging or responsive users. This paper proposes four types of models to quantify engagingness and responsiveness of users. These behaviors can be used as features in email reply order prediction, which predicts the email reply order given an email pair. Our experiments show that engagingness and responsiveness behavior features are more useful than other non-behavioral features in building a classifier for the email reply order prediction task. When combining behavior and non-behavior features, our classifier is also shown to predict the email reply order with good accuracy. This work was extended from the earlier conference paper that appeared in [9]. 2013-01-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/1980 info:doi/10.1007/978-3-7091-1346-2_10 https://ink.library.smu.edu.sg/context/sis_research/article/2979/viewcontent/Engagingness_and_Responsiveness_Behavior_Models_on_the_Enron_Emai.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Communication Technology and New Media Databases and Information Systems |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Communication Technology and New Media Databases and Information Systems |
spellingShingle |
Communication Technology and New Media Databases and Information Systems ON, Byung-Won LIM, Ee Peng JIANG, Jing TEOW, Loo Nin Engagingness and responsiveness behavior models on the Enron email network and its application to email reply order prediction |
description |
In email networks, user behaviors affect the way emails are sent and replied. While knowing these user behaviors can help to create more intelligent email services, there has not been much research into mining these behaviors. In this paper, we investigate user engagingness and responsiveness as two interaction behaviors that give us useful insights into how users email one another. Engaging users are those who can effectively solicit responses from other users. Responsive users are those who are willing to respond to other users. By modeling such behaviors, we are able to mine them and to identify engaging or responsive users. This paper proposes four types of models to quantify engagingness and responsiveness of users. These behaviors can be used as features in email reply order prediction, which predicts the email reply order given an email pair. Our experiments show that engagingness and responsiveness behavior features are more useful than other non-behavioral features in building a classifier for the email reply order prediction task. When combining behavior and non-behavior features, our classifier is also shown to predict the email reply order with good accuracy. This work was extended from the earlier conference paper that appeared in [9]. |
format |
text |
author |
ON, Byung-Won LIM, Ee Peng JIANG, Jing TEOW, Loo Nin |
author_facet |
ON, Byung-Won LIM, Ee Peng JIANG, Jing TEOW, Loo Nin |
author_sort |
ON, Byung-Won |
title |
Engagingness and responsiveness behavior models on the Enron email network and its application to email reply order prediction |
title_short |
Engagingness and responsiveness behavior models on the Enron email network and its application to email reply order prediction |
title_full |
Engagingness and responsiveness behavior models on the Enron email network and its application to email reply order prediction |
title_fullStr |
Engagingness and responsiveness behavior models on the Enron email network and its application to email reply order prediction |
title_full_unstemmed |
Engagingness and responsiveness behavior models on the Enron email network and its application to email reply order prediction |
title_sort |
engagingness and responsiveness behavior models on the enron email network and its application to email reply order prediction |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2013 |
url |
https://ink.library.smu.edu.sg/sis_research/1980 https://ink.library.smu.edu.sg/context/sis_research/article/2979/viewcontent/Engagingness_and_Responsiveness_Behavior_Models_on_the_Enron_Emai.pdf |
_version_ |
1770571740766797824 |