Scalable Multiagent Planning using Probabilistic Inference
Multiagent planning has seen much progress with the development of formal models such as Dec-POMDPs. However, the complexity of these models -- NEXP-Complete even for two agents -- has limited scalability. We identify certain mild conditions that are sufficient to make multiagent planning amenable t...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2011
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/2204 https://ink.library.smu.edu.sg/context/sis_research/article/3204/viewcontent/Scalable_Multiagent_Planning_using_Probabilistic_Inference.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Multiagent planning has seen much progress with the development of formal models such as Dec-POMDPs. However, the complexity of these models -- NEXP-Complete even for two agents -- has limited scalability. We identify certain mild conditions that are sufficient to make multiagent planning amenable to a scalable approximation w.r.t. the number of agents. This is achieved by constructing a graphical model in which likelihood maximization is equivalent to plan optimization. Using the Expectation-Maximization framework for likelihood maximization, we show that the necessary inference can be decomposed into processes that often involve a small subset of agents, thereby facilitating scalability. We derive a global update rule that combines these local inferences to monotonically increase the overall solution quality. Experiments on a large multiagent planning benchmark confirm the benefits of the new approach in terms of runtime and scalability. |
---|