Reinforcement learning for adaptive operator selection in memetic search applied to Quadratic Assignment Problem
Memetic search is well known as one of the state-of-the-art metaheuristics for finding high-quality solutions to NP-hard problems. Its performance is often attributable to appropriate design, including the choice of its operators. In this paper, we propose a Markov Decision Process model for the sel...
محفوظ في:
المؤلفون الرئيسيون: | HANDOKO, Stephanus Daniel, Nguyen, Duc Thien, YUAN, Zhi, LAU, Hoong Chuin |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2014
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/2666 https://ink.library.smu.edu.sg/context/sis_research/article/3666/viewcontent/ReinforcementLearningAdaptiveOperSelQAP_2014_GECCO.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Building algorithm portfolios for memetic algorithms
بواسطة: MISIR, Mustafa, وآخرون
منشور في: (2014) -
Hybrid Metaheuristics for Solving the Quadratic Assignment Problem and the Generalized Quadratic Assignment Problem
بواسطة: GUNAWAN, Aldy, وآخرون
منشور في: (2014) -
OSCAR: Online selection of algorithm portfolios with case study on memetic algorithms
بواسطة: MISIR, Mustafa, وآخرون
منشور في: (2015) -
An Empirical Study of Off-line Configuration and On-line Adaptation in Operator Selection
بواسطة: YUAN, Zhi, وآخرون
منشور في: (2014) -
Self-organizing neural network for adaptive operator selection in evolutionary search
بواسطة: TENG, Teck Hou, وآخرون
منشور في: (2016)