Mobile app tagging

Mobile app tagging aims to assign a list of keywords indicating core functionalities, main contents, key features or concepts of a mobile app. Mobile app tags can be potentially useful for app ecosystem stakeholders or other parties to improve app search, browsing, categorization, and advertising, e...

Full description

Saved in:
Bibliographic Details
Main Authors: CHEN, Ning, HOI, Steven C. H., LI, Shaohua, XIAO, Xiaokui
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2016
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/3171
https://ink.library.smu.edu.sg/context/sis_research/article/4172/viewcontent/mobile_app_tagging.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Mobile app tagging aims to assign a list of keywords indicating core functionalities, main contents, key features or concepts of a mobile app. Mobile app tags can be potentially useful for app ecosystem stakeholders or other parties to improve app search, browsing, categorization, and advertising, etc. However, most mainstream app markets, e.g., Google Play, Apple App Store, etc., currently do not explicitly support such tags for apps. To address this problem, we propose a novel auto mobile app tagging framework for annotating a given mobile app automatically, which is based on a search-based annotation paradigm powered by machine learning techniques. Specifically, given a novel query app without tags, our proposed framework (i) first explores online kernel learning techniques to retrieve a set of top-N similar apps that are semantically most similar to the query app from a large app repository; and (ii) then mines the text data of both the query app and the top-N similar apps to discover the most relevant tags for annotating the query app. To evaluate the efficacy of our proposed framework, we conduct an extensive set of experiments on a large real-world dataset crawled from Google Play. The encouraging results demonstrate that our technique is effective and promising.