From footprint to evidence: An exploratory study of mining social data for credit scoring

With the booming popularity of online social networks like Twitter and Weibo, online user footprints are accumulating rapidly on the social web. Simultaneously, the question of how to leverage the large-scale user-generated social media data for personal credit scoring comes into the sight of both r...

Full description

Saved in:
Bibliographic Details
Main Authors: GUO, Guangming, ZHU, Feida, CHEN, Enhong, LIU, Qi, WU, Le, GUAN, Chu
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2016
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/3455
https://ink.library.smu.edu.sg/context/sis_research/article/4456/viewcontent/FootprintEvidenceMiningSocialData_2016.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
id sg-smu-ink.sis_research-4456
record_format dspace
spelling sg-smu-ink.sis_research-44562020-03-30T01:59:10Z From footprint to evidence: An exploratory study of mining social data for credit scoring GUO, Guangming ZHU, Feida CHEN, Enhong LIU, Qi WU, Le GUAN, Chu With the booming popularity of online social networks like Twitter and Weibo, online user footprints are accumulating rapidly on the social web. Simultaneously, the question of how to leverage the large-scale user-generated social media data for personal credit scoring comes into the sight of both researchers and practitioners. It has also become a topic of great importance and growing interest in the P2P lending industry. However, compared with traditional financial data, heterogeneous social data presents both opportunities and challenges for personal credit scoring. In this article, we seek a deep understanding of how to learn users’ credit labels from social data in a comprehensive and efficient way. Particularly, we explore the social-data-based credit scoring problem under the micro-blogging setting for its open, simple, and real-time nature. To identify credit-related evidence hidden in social data, we choose to conduct an analytical and empirical study on a large-scale dataset from Weibo, the largest and most popular tweet-style website in China. Summarizing results from existing credit scoring literature, we first propose three social-data-based credit scoring principles as guidelines for in-depth exploration. In addition, we glean six credit-related insights arising from empirical observations of the testbed dataset. Based on the proposed principles and insights, we extract prediction features mainly from three categories of users’ social data, including demographics, tweets, and networks. To harness this broad range of features, we put forward a two-tier stacking and boosting enhanced ensemble learning framework. Quantitative investigation of the extracted features shows that online social media data does have good potential in discriminating good credit users from bad. Furthermore, we perform experiments on the real-world Weibo dataset consisting of more than 7.3 million tweets and 200,000 users whose credit labels are known through our third-party partner. Experimental results show that (i) our approach achieves a roughly 0.625 AUC value with all the proposed social features as input, and (ii) our learning algorithm can outperform traditional credit scoring methods by as much as 17% for social-data-based personal credit scoring 2016-12-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/3455 info:doi/10.1145/2996465 https://ink.library.smu.edu.sg/context/sis_research/article/4456/viewcontent/FootprintEvidenceMiningSocialData_2016.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Consumer finance Features P2P lending Personal credit scoring Social data User profiling Databases and Information Systems Digital Communications and Networking Social Media
institution Singapore Management University
building SMU Libraries
continent Asia
country Singapore
Singapore
content_provider SMU Libraries
collection InK@SMU
language English
topic Consumer finance
Features
P2P lending
Personal credit scoring
Social data
User profiling
Databases and Information Systems
Digital Communications and Networking
Social Media
spellingShingle Consumer finance
Features
P2P lending
Personal credit scoring
Social data
User profiling
Databases and Information Systems
Digital Communications and Networking
Social Media
GUO, Guangming
ZHU, Feida
CHEN, Enhong
LIU, Qi
WU, Le
GUAN, Chu
From footprint to evidence: An exploratory study of mining social data for credit scoring
description With the booming popularity of online social networks like Twitter and Weibo, online user footprints are accumulating rapidly on the social web. Simultaneously, the question of how to leverage the large-scale user-generated social media data for personal credit scoring comes into the sight of both researchers and practitioners. It has also become a topic of great importance and growing interest in the P2P lending industry. However, compared with traditional financial data, heterogeneous social data presents both opportunities and challenges for personal credit scoring. In this article, we seek a deep understanding of how to learn users’ credit labels from social data in a comprehensive and efficient way. Particularly, we explore the social-data-based credit scoring problem under the micro-blogging setting for its open, simple, and real-time nature. To identify credit-related evidence hidden in social data, we choose to conduct an analytical and empirical study on a large-scale dataset from Weibo, the largest and most popular tweet-style website in China. Summarizing results from existing credit scoring literature, we first propose three social-data-based credit scoring principles as guidelines for in-depth exploration. In addition, we glean six credit-related insights arising from empirical observations of the testbed dataset. Based on the proposed principles and insights, we extract prediction features mainly from three categories of users’ social data, including demographics, tweets, and networks. To harness this broad range of features, we put forward a two-tier stacking and boosting enhanced ensemble learning framework. Quantitative investigation of the extracted features shows that online social media data does have good potential in discriminating good credit users from bad. Furthermore, we perform experiments on the real-world Weibo dataset consisting of more than 7.3 million tweets and 200,000 users whose credit labels are known through our third-party partner. Experimental results show that (i) our approach achieves a roughly 0.625 AUC value with all the proposed social features as input, and (ii) our learning algorithm can outperform traditional credit scoring methods by as much as 17% for social-data-based personal credit scoring
format text
author GUO, Guangming
ZHU, Feida
CHEN, Enhong
LIU, Qi
WU, Le
GUAN, Chu
author_facet GUO, Guangming
ZHU, Feida
CHEN, Enhong
LIU, Qi
WU, Le
GUAN, Chu
author_sort GUO, Guangming
title From footprint to evidence: An exploratory study of mining social data for credit scoring
title_short From footprint to evidence: An exploratory study of mining social data for credit scoring
title_full From footprint to evidence: An exploratory study of mining social data for credit scoring
title_fullStr From footprint to evidence: An exploratory study of mining social data for credit scoring
title_full_unstemmed From footprint to evidence: An exploratory study of mining social data for credit scoring
title_sort from footprint to evidence: an exploratory study of mining social data for credit scoring
publisher Institutional Knowledge at Singapore Management University
publishDate 2016
url https://ink.library.smu.edu.sg/sis_research/3455
https://ink.library.smu.edu.sg/context/sis_research/article/4456/viewcontent/FootprintEvidenceMiningSocialData_2016.pdf
_version_ 1770573205824602112