Smart ambient sound analysis via structured statistical modeling

In this paper, we introduce a novel framework called SASA (Smart Ambient Sound Analyser) to support different ambient audio mining tasks (e.g., audio classification and location estimation). To gain comprehensive ambient sound modelling, SASA extracts a variety of acoustic features from different so...

全面介紹

Saved in:
書目詳細資料
Main Authors: SHEN, Jialie, NIE, Liqiang, CHUA, Tat Seng
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2016
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/3543
https://ink.library.smu.edu.sg/context/sis_research/article/4544/viewcontent/SmartAmbientSoundAnalysis_2016_MMM.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:In this paper, we introduce a novel framework called SASA (Smart Ambient Sound Analyser) to support different ambient audio mining tasks (e.g., audio classification and location estimation). To gain comprehensive ambient sound modelling, SASA extracts a variety of acoustic features from different sound components (e.g., music, voice and background), and translates them into structured information. This significantly enhances quality of audio content representation. Further, distinguished from existing approaches, SASA’s multilayered architecture seamlessly integrates mixture models and aPEGASOS (adaptive PEGASOS) SVM algorithm into a unified classification framework. The approach can leverage complimentary strengths of both models. Experimental results based on three large test collections demonstrate the SASA’s advantages over existing methods on various analysis tasks.