A more accurate model for finding tutorial segments explaining APIs

Developers prefer to utilize third-party libraries when they implement some functionalities and Application Programming Interfaces (APIs) are frequently used by them. Facing an unfamiliar API, developers tend to consult tutorials as learning resources. Unfortunately, the segments explaining a specif...

全面介紹

Saved in:
書目詳細資料
Main Authors: JIANG, He, ZHANG, Jingxuan, LI, Xiaochen, REN, Zhilei, LO, David
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2016
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/3751
https://ink.library.smu.edu.sg/context/sis_research/article/4753/viewcontent/1703.01553.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Developers prefer to utilize third-party libraries when they implement some functionalities and Application Programming Interfaces (APIs) are frequently used by them. Facing an unfamiliar API, developers tend to consult tutorials as learning resources. Unfortunately, the segments explaining a specific API scatter across tutorials. Hence, it remains a challenging issue to find the relevant segments. In this study, we propose a more accurate model to find the exact tutorial fragments explaining APIs. This new model consists of a text classifier with domain specific features. More specifically, we discover two important indicators to complement traditional text based features, namely co-occurrence APIs and knowledge based API extensions. In addition, we incorporate Word2Vec, a semantic similarity metric to enhance the new model. Extensive experiments over two publicly available tutorial datasets show that our new model could find up to 90% fragments explaining APIs and improve the state-of-the-art model by up to 30% in terms of F-measure.