PACELA: A neural framework for user visitation in location-based social networks

Check-in prediction using location-based social network data is an important research problem for both academia and industry since an accurate check-in predictive model is useful to many applications, e.g. urban planning, venue recommendation, route suggestion, and context-aware advertising. Intuiti...

全面介紹

Saved in:
書目詳細資料
Main Authors: DOAN, Thanh Nam, LIM, Ee-peng
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2018
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/4080
https://ink.library.smu.edu.sg/context/sis_research/article/5083/viewcontent/p13_doan.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:Check-in prediction using location-based social network data is an important research problem for both academia and industry since an accurate check-in predictive model is useful to many applications, e.g. urban planning, venue recommendation, route suggestion, and context-aware advertising. Intuitively, when considering venues to visit, users may rely on their past observed visit histories as well as some latent attributes associated with the venues. In this paper, we therefore propose a check-in prediction model based on a neural framework called Preference and Context Embeddings with Latent Attributes (PACELA). PACELA learns the embeddings space for the user and venue data as well as the latent attributes of both users and venues. More specifically, we use a probabilistic matrix factorization-based technique to infer the latent attributes specific to users and locations in location-based social networks (LBSNs), considering the user visitation decisions that could be affected by area attraction, neighborhood competition, and social homophily. PACELA also includes a deep learning neural network to combine both embedding and latent features to predict if a user performs check-in on a location. Our experiments on three different real world datasets show that PACELA yields the best check-in prediction accuracy against several baseline methods.