PACELA: A neural framework for user visitation in location-based social networks
Check-in prediction using location-based social network data is an important research problem for both academia and industry since an accurate check-in predictive model is useful to many applications, e.g. urban planning, venue recommendation, route suggestion, and context-aware advertising. Intuiti...
محفوظ في:
المؤلفون الرئيسيون: | DOAN, Thanh Nam, LIM, Ee-peng |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2018
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/4080 https://ink.library.smu.edu.sg/context/sis_research/article/5083/viewcontent/p13_doan.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Modeling location-based social network data with area attraction and neighborhood competition
بواسطة: DOAN, Thanh Nam, وآخرون
منشور في: (2019) -
Learning latent characteristics of locations using location-based social networking data
بواسطة: DOAN, Thanh Nam
منشور في: (2018) -
Attractiveness versus competition: Towards an unified model for user visitation
بواسطة: DOAN, Thanh-Nam, وآخرون
منشور في: (2016) -
AdNext: A Visit-Pattern-Aware Mobile Advertising System for Urban Commercial Complexes
بواسطة: KIM, Byoungjip, وآخرون
منشور في: (2011) -
Modeling check-in behavior with geographical neighborhood influence of venues
بواسطة: DOAN, Thanh Nam, وآخرون
منشور في: (2017)