Self-checking deep neural networks for anomalies and adversaries in deployment

Deep Neural Networks (DNNs) have been widely adopted, yet DNN models are surprisingly unreliable, which raises significant concerns about their use in critical domains. In this work, we propose that runtime DNN mistakes can be quickly detected and properly dealt with in deployment, especially in set...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: XIAO, Yan, BESCHASTNIKH, Ivan, LIN, Yun, HUNDAL, Rajdeep Singh, XIE, Xiaofei, ROSENBLUM, David S., DONG, Jin Song
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2022
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/sis_research/7493
https://ink.library.smu.edu.sg/context/sis_research/article/8496/viewcontent/tdsc22_selfchecker.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English