CODE: Coherence based decision boundaries for feature correspondence
A key challenge in feature correspondence is the difficulty in differentiating true and false matches at a local descriptor level. This forces adoption of strict similarity thresholds that discard many true matches. However, if analyzed at a global level, false matches are usually randomly scattered...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2018
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/4800 https://ink.library.smu.edu.sg/context/sis_research/article/5803/viewcontent/matching.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | A key challenge in feature correspondence is the difficulty in differentiating true and false matches at a local descriptor level. This forces adoption of strict similarity thresholds that discard many true matches. However, if analyzed at a global level, false matches are usually randomly scattered while true matches tend to be coherent (clustered around a few dominant motions), thus creating a coherence based separability constraint. This paper proposes a non-linear regression technique that can discover such a coherence based separability constraint from highly noisy matches and embed it into a correspondence likelihood model. Once computed, the model can filter the entire set of nearest neighbor matches (which typically contains over 90% false matches) for true matches. We integrate our technique into a full feature correspondence system which reliably generates large numbers of good quality correspondences over wide baselines where previous techniques provide few or no matches. |
---|