Modified ART 2A growing network capable of generating a fixed number of nodes

This paper introduces the Adaptive Resonance Theory under Constraint (ART-C 2A) learning paradigm based on ART 2A, which is capable of generating a user-defined number of recognition nodes through online estimation of an appropriate vigilance threshold. Empirical experiments compare the cluster vali...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: HE, Ji, TAN, Ah-hwee, TAN, Chew-Lim
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2004
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/sis_research/5238
https://ink.library.smu.edu.sg/context/sis_research/article/6241/viewcontent/ARTC_TNN04.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:This paper introduces the Adaptive Resonance Theory under Constraint (ART-C 2A) learning paradigm based on ART 2A, which is capable of generating a user-defined number of recognition nodes through online estimation of an appropriate vigilance threshold. Empirical experiments compare the cluster validity and the learning efficiency of ART-C 2A with those of ART 2A, as well as three closely related clustering methods, namely online K-Means, batch K-Means, and SOM, in a quantitative manner. Besides retaining the online cluster creation capability of ART 2A, ART-C 2A gives the alternative clustering solution, which allows a direct control on the number of output clusters generated by the self-organizing process.