Adaptive loss-aware quantization for multi-bit networks
We investigate the compression of deep neural networks by quantizing their weights and activations into multiple binary bases, known as multi-bit networks (MBNs), which accelerate the inference and reduce the storage for the deployment on low-resource mobile and embedded platforms. We propose Adapti...
محفوظ في:
المؤلفون الرئيسيون: | QU, Zhongnan, ZHOU, Zimu, CHENG, Yun, THIELE, Lothar |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/5251 https://ink.library.smu.edu.sg/context/sis_research/article/6254/viewcontent/cvpr20_qu.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Bounds on the optimal quantization performance of dynamically quantized linear systems with bounded noise
بواسطة: Ling, Q., وآخرون
منشور في: (2014) -
p-Meta: Towards on-device deep model adaptation
بواسطة: QU, Zhongnan, وآخرون
منشور في: (2022) -
Numerical studies on quantized vortex dynamics in superfludity and superconductivity
بواسطة: TANG QINGLIN
منشور في: (2013) -
Verification of bit-flip attacks against quantized neural networks
بواسطة: ZHANG, Yedi, وآخرون
منشور في: (2025) -
Adaptive vertex quantization for mesh compression
بواسطة: Qiu, Z.M., وآخرون
منشور في: (2014)