PlanningVis: A visual analytics approach to production planning in smart factories

Production planning in the manufacturing industry is crucial for fully utilizing factory resources (e.g., machines, raw materials and workers) and reducing costs. With the advent of industry 4.0, plenty of data recording the status of factory resources have been collected and further involved in pro...

Full description

Saved in:
Bibliographic Details
Main Authors: SUN, Dong, HUANG, Renfei, CHEN, Yuanzhe, WANG, Yong, ZENG, Jia, YUAN, Mingxuan, PONG, Ting-Chuen, QU, Huamin
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2020
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/5351
https://ink.library.smu.edu.sg/context/sis_research/article/6355/viewcontent/1907.12201.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
id sg-smu-ink.sis_research-6355
record_format dspace
spelling sg-smu-ink.sis_research-63552020-11-19T07:27:25Z PlanningVis: A visual analytics approach to production planning in smart factories SUN, Dong HUANG, Renfei CHEN, Yuanzhe WANG, Yong ZENG, Jia YUAN, Mingxuan PONG, Ting-Chuen QU, Huamin Production planning in the manufacturing industry is crucial for fully utilizing factory resources (e.g., machines, raw materials and workers) and reducing costs. With the advent of industry 4.0, plenty of data recording the status of factory resources have been collected and further involved in production planning, which brings an unprecedented opportunity to understand, evaluate and adjust complex production plans through a data-driven approach. However, developing a systematic analytics approach for production planning is challenging due to the large volume of production data, the complex dependency between products, and unexpected changes in the market and the plant. Previous studies only provide summarized results and fail to show details for comparative analysis of production plans. Besides, the rapid adjustment to the plan in the case of an unanticipated incident is also not supported. In this paper, we propose PlanningVis, a visual analytics system to support the exploration and comparison of production plans with three levels of details: a plan overview presenting the overall difference between plans, a product view visualizing various properties of individual products, and a production detail view displaying the product dependency and the daily production details in related factories. By integrating an automatic planning algorithm with interactive visual explorations, PlanningVis can facilitate the efficient optimization of daily production planning as well as support a quick response to unanticipated incidents in manufacturing. Two case studies with real-world data and carefully designed interviews with domain experts demonstrate the effectiveness and usability of PlanningVis. 2020-01-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/5351 info:doi/10.1109/TVCG.2019.2934275 https://ink.library.smu.edu.sg/context/sis_research/article/6355/viewcontent/1907.12201.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Production Planning Time Series Data Comparative Analysis Visual Analytics Smart Factory Industry 4.0 Graphics and Human Computer Interfaces Software Engineering
institution Singapore Management University
building SMU Libraries
continent Asia
country Singapore
Singapore
content_provider SMU Libraries
collection InK@SMU
language English
topic Production Planning
Time Series Data
Comparative Analysis
Visual Analytics
Smart Factory
Industry 4.0
Graphics and Human Computer Interfaces
Software Engineering
spellingShingle Production Planning
Time Series Data
Comparative Analysis
Visual Analytics
Smart Factory
Industry 4.0
Graphics and Human Computer Interfaces
Software Engineering
SUN, Dong
HUANG, Renfei
CHEN, Yuanzhe
WANG, Yong
ZENG, Jia
YUAN, Mingxuan
PONG, Ting-Chuen
QU, Huamin
PlanningVis: A visual analytics approach to production planning in smart factories
description Production planning in the manufacturing industry is crucial for fully utilizing factory resources (e.g., machines, raw materials and workers) and reducing costs. With the advent of industry 4.0, plenty of data recording the status of factory resources have been collected and further involved in production planning, which brings an unprecedented opportunity to understand, evaluate and adjust complex production plans through a data-driven approach. However, developing a systematic analytics approach for production planning is challenging due to the large volume of production data, the complex dependency between products, and unexpected changes in the market and the plant. Previous studies only provide summarized results and fail to show details for comparative analysis of production plans. Besides, the rapid adjustment to the plan in the case of an unanticipated incident is also not supported. In this paper, we propose PlanningVis, a visual analytics system to support the exploration and comparison of production plans with three levels of details: a plan overview presenting the overall difference between plans, a product view visualizing various properties of individual products, and a production detail view displaying the product dependency and the daily production details in related factories. By integrating an automatic planning algorithm with interactive visual explorations, PlanningVis can facilitate the efficient optimization of daily production planning as well as support a quick response to unanticipated incidents in manufacturing. Two case studies with real-world data and carefully designed interviews with domain experts demonstrate the effectiveness and usability of PlanningVis.
format text
author SUN, Dong
HUANG, Renfei
CHEN, Yuanzhe
WANG, Yong
ZENG, Jia
YUAN, Mingxuan
PONG, Ting-Chuen
QU, Huamin
author_facet SUN, Dong
HUANG, Renfei
CHEN, Yuanzhe
WANG, Yong
ZENG, Jia
YUAN, Mingxuan
PONG, Ting-Chuen
QU, Huamin
author_sort SUN, Dong
title PlanningVis: A visual analytics approach to production planning in smart factories
title_short PlanningVis: A visual analytics approach to production planning in smart factories
title_full PlanningVis: A visual analytics approach to production planning in smart factories
title_fullStr PlanningVis: A visual analytics approach to production planning in smart factories
title_full_unstemmed PlanningVis: A visual analytics approach to production planning in smart factories
title_sort planningvis: a visual analytics approach to production planning in smart factories
publisher Institutional Knowledge at Singapore Management University
publishDate 2020
url https://ink.library.smu.edu.sg/sis_research/5351
https://ink.library.smu.edu.sg/context/sis_research/article/6355/viewcontent/1907.12201.pdf
_version_ 1770575412437450752