Probabilistic guided exploration for reinforcement learning in self-organizing neural networks
Exploration is essential in reinforcement learning, which expands the search space of potential solutions to a given problem for performance evaluations. Specifically, carefully designed exploration strategy may help the agent learn faster by taking the advantage of what it has learned previously. H...
Saved in:
Main Authors: | , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2018
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/5467 https://ink.library.smu.edu.sg/context/sis_research/article/6470/viewcontent/ICA2018MineField.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Exploration is essential in reinforcement learning, which expands the search space of potential solutions to a given problem for performance evaluations. Specifically, carefully designed exploration strategy may help the agent learn faster by taking the advantage of what it has learned previously. However, many reinforcement learning mechanisms still adopt simple exploration strategies, which select actions in a pure random manner among all the feasible actions. In this paper, we propose novel mechanisms to improve the existing knowledgebased exploration strategy based on a probabilistic guided approach to select actions. We conduct extensive experiments in a Minefield navigation simulator and the results show that our proposed probabilistic guided exploration approach significantly improves the convergence rate. |
---|