Learning transferrable parameters for long-tailed sequential user behavior modeling
Sequential user behavior modeling plays a crucial role in online user-oriented services, such as product purchasing, news feed consumption, and online advertising. The performance of sequential modeling heavily depends on the scale and quality of historical behaviors. However, the number of user beh...
محفوظ في:
المؤلفون الرئيسيون: | YIN, Jianwen, LIU, Chenghao, WANG, Weiqing, SUN, Jianling, HOI, Steven C. H. |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2020
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/5890 https://ink.library.smu.edu.sg/context/sis_research/article/6893/viewcontent/paper_KDD20b.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Learning relation prototype from unlabeled texts for long-tail relation extraction
بواسطة: CAO, Yixin, وآخرون
منشور في: (2023) -
Rare-event simulation of heavy-tailed random walks by sequential importance sampling and resampling
بواسطة: Chan, H.P., وآخرون
منشور في: (2014) -
SDSS: Sequential data sharing system in IoT
بواسطة: LAI, Jianchang, وآخرون
منشور في: (2024) -
The devil is in the tails: How long-tailed code distributions impact large language models
بواسطة: ZHOU, Xin, وآخرون
منشور في: (2023) -
HEAD AND TAIL: NETWORK EFFECTS AND LONG TAIL IN SUPPLY CHAIN MANAGEMENT
بواسطة: BI SHENG
منشور في: (2021)