Boosting privately: Federated extreme gradient boosting for mobile crowdsensing
Recently, Google and other 24 institutions proposed a series of open challenges towards federated learning (FL), which include application expansion and homomorphic encryption (HE). The former aims to expand the applicable machine learning models of FL. The latter focuses on who holds the secret key...
Saved in:
Main Authors: | LIU, Yang, MA, Zhuo, LIU, Ximeng, MA, Siqi, NEPAL, Surya, DENG, Robert H., REN, Kui |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2020
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/5921 https://ink.library.smu.edu.sg/context/sis_research/article/6924/viewcontent/BoostingPrivately_av.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
A blockchain-based location privacy-preserving crowdsensing system
由: YANG, Mengmeng, et al.
出版: (2019) -
CROWDFL: Privacy-preserving mobile crowdsensing system via federated learning
由: ZHAO, Bowen, et al.
出版: (2023) -
Gradient boosted graph convolutional network on heterophilic graph
由: Seah, Ming Yang
出版: (2024) -
CrowdFA: A privacy-preserving mobile crowdsensing paradigm via federated analytics
由: ZHAO, Bowen, et al.
出版: (2023) -
PRICE: Privacy and reliability-aware real-time incentive system for crowdsensing
由: ZHAO, Bowen, et al.
出版: (2021)