Boosting privately: Federated extreme gradient boosting for mobile crowdsensing
Recently, Google and other 24 institutions proposed a series of open challenges towards federated learning (FL), which include application expansion and homomorphic encryption (HE). The former aims to expand the applicable machine learning models of FL. The latter focuses on who holds the secret key...
Saved in:
Main Authors: | LIU, Yang, MA, Zhuo, LIU, Ximeng, MA, Siqi, NEPAL, Surya, DENG, Robert H., REN, Kui |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2020
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/5921 https://ink.library.smu.edu.sg/context/sis_research/article/6924/viewcontent/BoostingPrivately_av.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
CROWDFL: Privacy-preserving mobile crowdsensing system via federated learning
由: ZHAO, Bowen, et al.
出版: (2023) -
A blockchain-based location privacy-preserving crowdsensing system
由: YANG, Mengmeng, et al.
出版: (2019) -
Gradient boosted graph convolutional network on heterophilic graph
由: Seah, Ming Yang
出版: (2024) -
CrowdFA: A privacy-preserving mobile crowdsensing paradigm via federated analytics
由: ZHAO, Bowen, et al.
出版: (2023) -
INFLATION AND OUTPUT GROWTH FORECASTING IN A DATA-RICH ENVIRONMENT USING EXTREME GRADIENT BOOSTED TREES WITH ONLINE LEARNING
由: LIM KAI ZHUO
出版: (2021)