Predictive adaptive resonance theory and knowledge discovery in databases
This paper investigates the scalability of predictive Adaptive Resonance Theory (ART) networks for knowledge discovery in very large databases. Although predictive ART performs fast and incremental learning, the number of recognition categories or rules that it creates during learning may become sub...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2000
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6084 https://ink.library.smu.edu.sg/context/sis_research/article/7087/viewcontent/Tan_Soon2000_PredictiveAdaptiveResonance_pv.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | This paper investigates the scalability of predictive Adaptive Resonance Theory (ART) networks for knowledge discovery in very large databases. Although predictive ART performs fast and incremental learning, the number of recognition categories or rules that it creates during learning may become substantially large and cause the learning speed to slow down. To tackle this problem, we introduce an on-line algorithm for evaluating and pruning categories during learning. Benchmark experiments on a large scale data set show that on-line pruning has been effective in reducing the number of the recognition categories and the time for convergence. Interestingly, the pruned networks also produce better predictive performance. |
---|