Predictive adaptive resonance theory and knowledge discovery in databases
This paper investigates the scalability of predictive Adaptive Resonance Theory (ART) networks for knowledge discovery in very large databases. Although predictive ART performs fast and incremental learning, the number of recognition categories or rules that it creates during learning may become sub...
Saved in:
Main Authors: | TAN, Ah-hwee, SOON, Hui-Shin Vivien |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2000
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/6084 https://ink.library.smu.edu.sg/context/sis_research/article/7087/viewcontent/Tan_Soon2000_PredictiveAdaptiveResonance_pv.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Intelligence through interaction: Towards a unified theory for learning
由: TAN, Ah-hwee, et al.
出版: (2007) -
Mining RDF metadata for generalized association rules: Knowledge discovery in the semantic web era
由: JIANG, Tao, et al.
出版: (2006) -
Efficient algorithms for trajectory-aware mobile crowdsourcing
由: HAN, Chung-Kyun
出版: (2021) -
Predicting Trusts among Users of Online Communities - An Epinions Case Study
由: LIU, Haifeng, et al.
出版: (2008) -
k-Anonymity in the Presence of External Databases
由: SACHARIDIS, Dimitris, et al.
出版: (2010)