Forecasting interaction order on temporal graphs
Link prediction is a fundamental task for graph analysis and the topic has been studied extensively for static or dynamic graphs. Essentially, the link prediction is formulated as a binary classification problem about two nodes. However, for temporal graphs, links (or interactions) among node sets a...
Saved in:
Main Authors: | XIA, Wenwen, LI, Yuchen, TIAN, Jianwei, LI, Shenghong |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2021
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/6134 https://ink.library.smu.edu.sg/context/sis_research/article/7137/viewcontent/3447548.3467341.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Graph neural point process for temporal interaction prediction
由: XIA, Wenwen, et al.
出版: (2023) -
Dynamic meta-path guided temporal heterogeneous graph neural networks
由: JI, Yugang, et al.
出版: (2024) -
On the substructure countability of graph neural networks
由: XIA, Wenwen, et al.
出版: (2022) -
Context-aware event forecasting via graph disentanglement
由: MA, Yunshan, et al.
出版: (2023) -
DeepIS: Susceptibility estimation on social networks
由: XIA, Wenwen, et al.
出版: (2021)