A self-organizing approach to episodic memory modeling

This paper presents a neural model that learns episodic traces in response to a continual stream of sensory input and feedback received from the environment. The proposed model, based on fusion Adaptive Resonance Theory (fusion ART) network, extracts key events and encodes spatiotemporal relations b...

Full description

Saved in:
Bibliographic Details
Main Authors: WANG, Wenwen, SUBAGDJA, Budhitama, TAN, Ah-hwee
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2010
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/6164
https://ink.library.smu.edu.sg/context/sis_research/article/7167/viewcontent/Episodic20Memory20IJCNN202010.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:This paper presents a neural model that learns episodic traces in response to a continual stream of sensory input and feedback received from the environment. The proposed model, based on fusion Adaptive Resonance Theory (fusion ART) network, extracts key events and encodes spatiotemporal relations between events by creating cognitive nodes dynamically. The model further incorporates a novel memory search procedure, which performs parallel search of stored episodic traces continuously. Comparing with prior systems, the proposed episodic memory model presents a robust approach to encoding key events and episodes and recalling them using partial and erroneous cues. We present experimental studies, wherein the model is used to learn episodic memory of an agent’s experience in a first person game environment called Unreal Tournament. Our experimental results show that the model produces highly robust performance in encoding and recalling events and episodes even with incomplete and noisy cues.