Rule extraction: From neural architecture to symbolic representation
This paper shows how knowledge, in the form of fuzzy rules, can be derived from a supervised learning neural network called fuzzy ARTMAP. Rule extraction proceeds in two stages: pruning, which simplifies the network structure by removing excessive recognition categories and weights; and quantization...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
1995
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6281 https://ink.library.smu.edu.sg/context/sis_research/article/7284/viewcontent/ARTMAP_Rule_Extraction_CS95.PDF |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | This paper shows how knowledge, in the form of fuzzy rules, can be derived from a supervised learning neural network called fuzzy ARTMAP. Rule extraction proceeds in two stages: pruning, which simplifies the network structure by removing excessive recognition categories and weights; and quantization of continuous learned weights, which allows the final system state to be translated into a usable set of descriptive rules. Three benchmark studies illustrate the rule extraction methods: (1) Pima Indian diabetes diagnosis, (2) mushroom classification and (3) DNA promoter recognition. Fuzzy ARTMAP and ART-EMAP are compared with the ADAP algorithm, the k nearest neighbor system, the back-propagation network and the C4.5 decision tree. The ARTMAP rule extraction procedure is also compared with the Knowledgetron and NOFM algorithms, which extract rules from back-propagation networks. Simulation results consistently indicate that ARTMAP rule extraction produces compact sets of comprehensible rules for which accuracy and complexity compare favorably to rules extracted by alternative algorithms. |
---|