Structuring home video by snippet detection and pattern parsing

Hand-held camcorders have been popularly used in capturing and documenting daily lives. Nonetheless, searching for personal memories in home videos is still a laborious task. This paper describes novel approaches in detecting snippets and patterns in home videos for content indexing. To deal with th...

Full description

Saved in:
Bibliographic Details
Main Authors: PAN, Zailiang, NGO, Chong-wah
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2004
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/6443
https://ink.library.smu.edu.sg/context/sis_research/article/7446/viewcontent/1026711.1026723.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Hand-held camcorders have been popularly used in capturing and documenting daily lives. Nonetheless, searching for personal memories in home videos is still a laborious task. This paper describes novel approaches in detecting snippets and patterns in home videos for content indexing. To deal with the fact that most shots are long and with handshake artifacts, a motion analysis algorithm based on Kalman filter and finite state machine is proposed to decompose videos into tables of snippets. Each snippet is represented by a set of moving and static patterns. The moving patterns are automatically detected and tracked, while the static patterns are manually input by users. A MWBG pattern matching algorithm is then proposed to effectively detect and parse the patterns in snippets. Home videos are ultimately albumed and indexed according to the moving and static patterns to facilitate content search.