Structuring home video by snippet detection and pattern parsing
Hand-held camcorders have been popularly used in capturing and documenting daily lives. Nonetheless, searching for personal memories in home videos is still a laborious task. This paper describes novel approaches in detecting snippets and patterns in home videos for content indexing. To deal with th...
Saved in:
Main Authors: | , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2004
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6443 https://ink.library.smu.edu.sg/context/sis_research/article/7446/viewcontent/1026711.1026723.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-7446 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-74462022-01-10T06:22:40Z Structuring home video by snippet detection and pattern parsing PAN, Zailiang NGO, Chong-wah Hand-held camcorders have been popularly used in capturing and documenting daily lives. Nonetheless, searching for personal memories in home videos is still a laborious task. This paper describes novel approaches in detecting snippets and patterns in home videos for content indexing. To deal with the fact that most shots are long and with handshake artifacts, a motion analysis algorithm based on Kalman filter and finite state machine is proposed to decompose videos into tables of snippets. Each snippet is represented by a set of moving and static patterns. The moving patterns are automatically detected and tracked, while the static patterns are manually input by users. A MWBG pattern matching algorithm is then proposed to effectively detect and parse the patterns in snippets. Home videos are ultimately albumed and indexed according to the moving and static patterns to facilitate content search. 2004-10-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/6443 info:doi/10.1145/1026711.1026723 https://ink.library.smu.edu.sg/context/sis_research/article/7446/viewcontent/1026711.1026723.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University Object Tracking Pattern Parsing Snippet Detection Graphics and Human Computer Interfaces Theory and Algorithms |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
Object Tracking Pattern Parsing Snippet Detection Graphics and Human Computer Interfaces Theory and Algorithms |
spellingShingle |
Object Tracking Pattern Parsing Snippet Detection Graphics and Human Computer Interfaces Theory and Algorithms PAN, Zailiang NGO, Chong-wah Structuring home video by snippet detection and pattern parsing |
description |
Hand-held camcorders have been popularly used in capturing and documenting daily lives. Nonetheless, searching for personal memories in home videos is still a laborious task. This paper describes novel approaches in detecting snippets and patterns in home videos for content indexing. To deal with the fact that most shots are long and with handshake artifacts, a motion analysis algorithm based on Kalman filter and finite state machine is proposed to decompose videos into tables of snippets. Each snippet is represented by a set of moving and static patterns. The moving patterns are automatically detected and tracked, while the static patterns are manually input by users. A MWBG pattern matching algorithm is then proposed to effectively detect and parse the patterns in snippets. Home videos are ultimately albumed and indexed according to the moving and static patterns to facilitate content search. |
format |
text |
author |
PAN, Zailiang NGO, Chong-wah |
author_facet |
PAN, Zailiang NGO, Chong-wah |
author_sort |
PAN, Zailiang |
title |
Structuring home video by snippet detection and pattern parsing |
title_short |
Structuring home video by snippet detection and pattern parsing |
title_full |
Structuring home video by snippet detection and pattern parsing |
title_fullStr |
Structuring home video by snippet detection and pattern parsing |
title_full_unstemmed |
Structuring home video by snippet detection and pattern parsing |
title_sort |
structuring home video by snippet detection and pattern parsing |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2004 |
url |
https://ink.library.smu.edu.sg/sis_research/6443 https://ink.library.smu.edu.sg/context/sis_research/article/7446/viewcontent/1026711.1026723.pdf |
_version_ |
1770575961385861120 |