Learning spatio-temporal representation with local and global diffusion
Convolutional Neural Networks (CNN) have been regarded as a powerful class of models for visual recognition problems. Nevertheless, the convolutional filters in these networks are local operations while ignoring the large-range dependency. Such drawback becomes even worse particularly for video reco...
محفوظ في:
المؤلفون الرئيسيون: | QIU, Zhaofan, YAO, Ting, NGO, Chong-wah, TIAN, Xinmei, MEI, Tao |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/6458 https://ink.library.smu.edu.sg/context/sis_research/article/7461/viewcontent/Qiu_Learning_Spatio_Temporal_Representation_With_Local_and_Global_Diffusion_CVPR_2019_paper.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Dynamic temporal filtering in video models
بواسطة: LONG, Fuchen, وآخرون
منشور في: (2022) -
Exploring object relation in mean teacher for cross-domain detection
بواسطة: CAI, Qi, وآخرون
منشور في: (2019) -
Optimization planning for 3D ConvNets
بواسطة: QIU, Zhaofan, وآخرون
منشور في: (2021) -
MLP-3D: A MLP-like 3D architecture with grouped time mixing
بواسطة: QIU, Zhaofan, وآخرون
منشور في: (2022) -
Self-supervised spatio-temporal representation learning for videos by predicting motion and appearance statistics
بواسطة: WANG, Jiangliu, وآخرون
منشور في: (2019)