Predicting anti-Asian hateful users on Twitter during COVID-19
We investigate predictors of anti-Asian hate among Twitter users throughout COVID-19. With the rise of xenophobia and polarization that has accompanied widespread social media usage in many nations, online hate has become a major social issue, attracting many researchers. Here, we apply natural lang...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2021
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6787 https://ink.library.smu.edu.sg/context/sis_research/article/7790/viewcontent/2021.findings_emnlp.398.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
id |
sg-smu-ink.sis_research-7790 |
---|---|
record_format |
dspace |
spelling |
sg-smu-ink.sis_research-77902022-01-27T10:00:15Z Predicting anti-Asian hateful users on Twitter during COVID-19 AN, Jisun KWAK, Haewoon LEE, Claire Seungeun JUN, Bogang AHN, Yong-Yeol We investigate predictors of anti-Asian hate among Twitter users throughout COVID-19. With the rise of xenophobia and polarization that has accompanied widespread social media usage in many nations, online hate has become a major social issue, attracting many researchers. Here, we apply natural language processing techniques to characterize social media users who began to post anti-Asian hate messages during COVID-19. We compare two user groups—those who posted anti-Asian slurs and those who did not—with respect to a rich set of features measured with data prior to COVID-19 and show that it is possible to predict who later publicly posted anti-Asian slurs. Our analysis of predictive features underlines the potential impact of news media and information sources that report on online hate and calls for further investigation into the role of polarized communication networks and news media. 2021-11-01T07:00:00Z text application/pdf https://ink.library.smu.edu.sg/sis_research/6787 info:doi/https://aclanthology.org/2021.findings-emnlp.398 https://ink.library.smu.edu.sg/context/sis_research/article/7790/viewcontent/2021.findings_emnlp.398.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Computing and Information Systems eng Institutional Knowledge at Singapore Management University COVID-19 hate speech Artificial Intelligence and Robotics Numerical Analysis and Scientific Computing |
institution |
Singapore Management University |
building |
SMU Libraries |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
SMU Libraries |
collection |
InK@SMU |
language |
English |
topic |
COVID-19 hate speech Artificial Intelligence and Robotics Numerical Analysis and Scientific Computing |
spellingShingle |
COVID-19 hate speech Artificial Intelligence and Robotics Numerical Analysis and Scientific Computing AN, Jisun KWAK, Haewoon LEE, Claire Seungeun JUN, Bogang AHN, Yong-Yeol Predicting anti-Asian hateful users on Twitter during COVID-19 |
description |
We investigate predictors of anti-Asian hate among Twitter users throughout COVID-19. With the rise of xenophobia and polarization that has accompanied widespread social media usage in many nations, online hate has become a major social issue, attracting many researchers. Here, we apply natural language processing techniques to characterize social media users who began to post anti-Asian hate messages during COVID-19. We compare two user groups—those who posted anti-Asian slurs and those who did not—with respect to a rich set of features measured with data prior to COVID-19 and show that it is possible to predict who later publicly posted anti-Asian slurs. Our analysis of predictive features underlines the potential impact of news media and information sources that report on online hate and calls for further investigation into the role of polarized communication networks and news media. |
format |
text |
author |
AN, Jisun KWAK, Haewoon LEE, Claire Seungeun JUN, Bogang AHN, Yong-Yeol |
author_facet |
AN, Jisun KWAK, Haewoon LEE, Claire Seungeun JUN, Bogang AHN, Yong-Yeol |
author_sort |
AN, Jisun |
title |
Predicting anti-Asian hateful users on Twitter during COVID-19 |
title_short |
Predicting anti-Asian hateful users on Twitter during COVID-19 |
title_full |
Predicting anti-Asian hateful users on Twitter during COVID-19 |
title_fullStr |
Predicting anti-Asian hateful users on Twitter during COVID-19 |
title_full_unstemmed |
Predicting anti-Asian hateful users on Twitter during COVID-19 |
title_sort |
predicting anti-asian hateful users on twitter during covid-19 |
publisher |
Institutional Knowledge at Singapore Management University |
publishDate |
2021 |
url |
https://ink.library.smu.edu.sg/sis_research/6787 https://ink.library.smu.edu.sg/context/sis_research/article/7790/viewcontent/2021.findings_emnlp.398.pdf |
_version_ |
1770576068873289728 |