Outlier detection in complex categorical data by modeling the feature value couplings

This paper introduces a novel unsupervised outlier detection method, namely Coupled Biased Random Walks (CBRW), for identifying outliers in categorical data with diversified frequency distributions and many noisy features. Existing pattern-based outlier detection methods are ineffective in handling...

全面介紹

Saved in:
書目詳細資料
Main Authors: PANG, Guansong, CAO, Longbing, CHEN, Ling
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2016
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/7146
https://ink.library.smu.edu.sg/context/sis_research/article/8149/viewcontent/272.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!

相似書籍