A neural network model for a hierarchical spatio-temporal memory

The architecture of the human cortex is uniform and hierarchical in nature. In this paper, we build upon works on hierarchical classification systems that model the cortex to develop a neural network representation for a hierarchical spatio-temporal memory (HST-M) system. The system implements spati...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: RAMANATHAN, Kiruthika, SHI, Luping, LI, Jianming, LIM, Kian Guan, ANG, Zhi Ping, TOW, Chong Chong
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2008
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/sis_research/7392
https://ink.library.smu.edu.sg/context/sis_research/article/8395/viewcontent/LNCS_5506___Advances_in_Neuro_Information_Processing.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:The architecture of the human cortex is uniform and hierarchical in nature. In this paper, we build upon works on hierarchical classification systems that model the cortex to develop a neural network representation for a hierarchical spatio-temporal memory (HST-M) system. The system implements spatial and temporal processing using neural network architectures. We have tested the algorithms developed against both the MLP and the Hierarchical Temporal Memory algorithms. Our results show definite improvement over MLP and are comparable to the performance of HTM.