Carbon-aware mine planning with a novel multi-objective framework

The logistical complication of long-term mine planning involves deciding the sequential extraction of materials from the mine pit and their subsequent processing steps based on geological, geometrical, and resource constraints. The net present value (NPV) of profit over the mine's lifespan usua...

全面介紹

Saved in:
書目詳細資料
Main Authors: NURUL ASYIKEEN BINTE AZHAR, GUNAWAN, Aldy, CHENG, Shih-Fen, LEONARDI, Erwin
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2023
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/8074
https://ink.library.smu.edu.sg/context/sis_research/article/9077/viewcontent/iccl2023.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:The logistical complication of long-term mine planning involves deciding the sequential extraction of materials from the mine pit and their subsequent processing steps based on geological, geometrical, and resource constraints. The net present value (NPV) of profit over the mine's lifespan usually forms the sole objective for this problem, which is considered as the NP-hard precedence-constrained production scheduling problem (PCPSP) as well. However, increased pressure for more sustainable and carbon-aware industries also calls for environmental indicators to be considered. In this paper, we enhance the generic PCPSP formulation into a multi-objective optimization (MOO) problem whereby carbon cost forms an additional objective. We apply the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to this formulation and experiment with variants to the solution generation. Our tailored application of the NSGA-II using a set of real-world inspired datasets can form an approximated Pareto front for planners to observe stipulated annual carbon emission targets. It also displays that tailored variants of the NSGA-II can produce diverse solutions that are close to the true Pareto front.